50 research outputs found

    Spatiotemporal analyses of soil moisture from point to footprint scale in two different hydroclimatic regions

    Get PDF
    This paper presents time stability analyses of soil moisture at different spatial measurement support scales (point scale and airborne remote sensing (RS) footprint scale 800 m Ɨ 800 m) in two different hydroclimatic regions. The data used in the analyses consist of in situ and passive microwave remotely sensed soil moisture data from the Southern Great Plains Hydrology Experiments 1997 and 1999 (SGP97 and SGP99) conducted in the Little Washita (LW) watershed, Oklahoma, and the Soil Moisture Experiments 2002 and 2005 (SMEX02 and SMEX05) in the Walnut Creek (WC) watershed, Iowa. Results show that in both the regions soil properties (i.e., percent silt, percent sand, and soil texture) and topography (elevation and slope) are significant physical controls jointly affecting the spatiotemporal evolution and time stability of soil moisture at both point and footprint scales. In Iowa, using pointā€scale soil moisture measurements, the WC11 field was found to be more time stable (TS) than the WC12 field. The common TS points using data across the 3 year period (2002ā€“2005) were mostly located at moderate to high elevations in both the fields. Furthermore, the soil texture at these locations consists of either loam or clay loam soil. Drainage features and cropping practices also affected the fieldā€scale soil moisture variability in the WC fields. In Oklahoma, the field having a flat topography (LW21) showed the worst TS features compared to the fields having gently rolling topography (LW03 and LW13). The LW13 field (silt loam) exhibited better time stability than the LW03 field (sandy loam) and the LW21 field (silt loam). At the RS footprint scale, in Iowa, the analysis of variance (ANOVA) tests show that the percent clay and percent sand are better able to discern the TS features of the footprints compared to the soil texture. The best soil indicator of soil moisture time stability is the loam soil texture. Furthermore, the hilltops (slope āˆ¼0%ā€“0.45%) exhibited the best TS characteristics in Iowa. On the other hand, in Oklahoma, ANOVA results show that the footprints with sandy loam and loam soil texture are better indicators of the time stability phenomena. In terms of the hillslope position, footprints with mild slope (0.93%ā€“1.85%) are the best indicators of TS footprints. Also, at both point and footprint scales in both the regions, land useā€“land cover type does not influence soil moisture time stability

    Effective hydraulic parameters for steady state vertical flow in heterogeneous soils,

    Get PDF
    [1] In hydroclimate and land-atmospheric interaction models, effective hydraulic properties are needed at large grid scales. In this study, the effective soil hydraulic parameters of the areally heterogeneous soil formation are derived by conceptualizing the heterogeneous soil formation as an equivalent homogeneous medium and assuming that the equivalent homogeneous soil will approximately discharge the same total amount of flux and produce same average pressure head profile in the formation. As compared to previous effective hydraulic property studies, a specific feature of this study is that the derived effective hydraulic parameters are mean-gradient-dependent (i.e., vary across depth). Although areal soil heterogeneity was formulated as parallel homogeneous stream tubes in this study, our results appear to be consistent with the previous findings of meangradient unsaturated hydraulic conductivit

    Upscaling of soil hydraulic properties for steady state evaporation and infiltration

    Get PDF
    [1] Estimation of effective/average soil hydraulic properties for large land areas is an outstanding issue in hydrologic modeling. The goal of this study is to provide flowspecific rules and guidelines for upscaling soil hydraulic properties in an areally heterogeneous field. In this study, we examined the impact of areal heterogeneity of soil hydraulic parameters on soil ensemble behavior for steady state evaporation and infiltration. The specific objectives of this study are (1) to address the impact of averaging methods of shape parameters and parameter correlation on ensemble behavior of steady state flow in an areally heterogeneous field and (2) to investigate the effectiveness of the ''average parameters'' in terms of the degree of correlation between hydraulic property parameters for the steady state evaporation and infiltration in unsaturated soil. Using an analytical solution of Richards' equation, the ensemble characteristics and flow dynamics based on average hydraulic property parameters are studied for evaporation and infiltration. Using various flow and average scenarios, we illustrated the resulting differences among the various averaging schemes. For vertical evaporation and infiltration the use of a geometric mean value for the shape parameter a of Gardner-Russo model and Brooks-Corey model and arithmetic mean value for the saturated hydraulic conductivity K s simulates the ensemble flow behavior the best. The efficacy of the ''average parameters'' depends on the flow condition and the degree of correlation between the hydraulic property parameters. With the a and K s parameters perfectly correlated, the ''average parameters'' were found to be generally most effective. The correlation between the hydraulic conductivity K s and the parameter a results in an ensemble soil behavior more like a sand
    corecore